
How Samsung Secures Your Wallet

&

How To Break It

HC Ma

Tencent’s Xuanwu Lab

http://xlab.tencent.com @XuanwuLab

Who am I ?

• Security Researcher @

• hyperchemma#tencent.com

– Embedded Device Security

– Firmware Reverse-Engineering

– Fan of IoT

– Big Fan of

Who am I ?

• Security Researcher @

• hyperchemma#tencent.com

– Embedded Device Security

– Firmware Reverse-Engineering

– Fan of IoT

– Big Fan of

Agenda

• What’s SamsungPay

• SamsungPay Architecture

• Steal Money from SamsungPay?!

What’s SamsungPay?

=

What’s SamsungPay?

=
Tokenization

Magnetic Card

Magnetic Card & MST

• Magnetic Card:
• Store data using magnetic particles;

• Physically 3 tracks on card;

• Track2 is the only one needed for payment;

• 6230744888888888888=2102777777777777;

• Card Skimmer;

• MST:
• Magnetic Secure Transmission;

• Technology for simulating magnetic card;

• Use alternating magnetic field to transmit signal;

• Invented by LoopPay, bought by Samsung;

• Now ported to Samsungpay;

Magnetic Card & MST

• Magnetic Card:
• Store data using magnetic particles;

• Physically 3 tracks on card;

• Track2 is the only one needed for payment;

• 6230744888888888888=2102777777777777;

• Card Skimmer;

• MST:
• Magnetic Secure Transmission;

• Technology for simulating magnetic card;

• Use alternating magnetic field to transmit signal;

• Invented by LoopPay, bought by Samsung;

• Now ported to Samsungpay;

MST mechanism

MST mechanism

However,

Anyone can

capture this

signal

Tokenization

• Reliable solution for
processing sensitive
information;

• Mathematically
inreversible;

• NO Sensitive data
leaked;

• But Where to store?

Secure Element

• Secure Element(SE) is a secure chip for
securely hosting applications and their
confidential and cryptographic data;

• SE has very high security level, and is
the most essential part of mobile
payment;

• Three types: UICC, MicroSD and
Embedded SE;

Secure Element

• Secure Element(SE) is a secure chip for
securely hosting applications and their
confidential and cryptographic data;

• SE has very high security level, and is
the most essential part of mobile
payment;

• Three types: UICC, MicroSD and
Embedded SE;

Applet

• An OS resides in SE;

• Applet is an application running upon the OS,

developed by Java;

• Compatible with JavaCard;

• Two methods required: install and process;

• Communicate with APDU;

• In CAP files forms;

• Confidential and cryptographic data for

generating token also reside in SE;

M
o
re

 S
e
c
u
re

M
o
re

 In
te

rfa
c
e

Applets running in SE

Trustlets For Payment

Drivers for devices and TrustZone

Libs for Comm and Crypto

SamsungPay Apps

SE

TrustZone

Android Kernel

Android Native

Android App

SamsungPay Architecture

SamsungPayStub

•Pre-installed in official firmware released after

2016.03,located in /system/priv-app/SamsungPayStub;

•SamsungPay works fine without this;

•No payment function,just a stub;

•Download and install necessary App:

–SamsungPay Main App;

–SamsungPay Framework;

–TSM Serivce App;

Main App & Framework

•Main App:

•Update package for

SamsungPayStub,shared the same

package name;

•Payment function,UI code and Card

Management code included;

•Save configuration in shared

preferences:common_preferences.x

ml and prov_preferences.xml;

•Save data in 8 SQLITE databases;

•Most data encrypted by private

algorithm (localefont);

•Framework:

•Provide service for communicating with

TrustZone;

•Trustlet bins are included in asset

directory;

Main App & Framework

•Main App:

•Update package for

SamsungPayStub,shared the same

package name;

•Payment function,UI code and Card

Management code included;

•Save configuration in shared

preferences:common_preferences.x

ml and prov_preferences.xml;

•Save data in 8 SQLITE databases;

•Most data encrypted by private

algorithm (localefont);

•Framework:

•Provide service for communicating with

TrustZone;

•Trustlet bins are included in asset

directory;

TSM Service

•A bridge between Bank and SamsungPay;

•Different for different region, in China, Provided and signed by China

UnionPay;

•Provide remote card management:

•Enrollment

•Download

•Update

•Revoke

•Delete

•Main App call service exported by TSM to achieve card management;

•Communicate with Service Provider web server.

SKMS Agent

•Samsung Key Management Service Agent;

•Communicate with Samsung web server;

•Three versions:
1.Pre-installed odex in /system/priv-app/SKMSAgent,obfuscated;

2.dalvik-cache odex in /dalvik-cache/, clear code;

3.Full apk Package bundled in some TSM install Package,obfuscated;

•Do SE initialization at very beginning phase;

•Collect SE information for every payment and

registration;

Interface2Native

•Four methods for SamsungPay:

–nativeCreateTLCommunicationContext

–nativeDestroyTLCommunicationContext

–nativeProcessTACommand

–nativeGenerateDeviceCertificates

Android App

Android Native

•Few libs are involved in SamsungPay:

•libandroid_servers.so -> wrapper for all native service;

•libtlc_spay.so -> trustlet communication lib for samsungpay;

•libtlc_direct_comm.so-> lower communication lib;

•libMcClient.so -> MobiCore Client Lib;

•Daemon for communication:

•mcDriverDaemon -> daemon for talking to driver, by read,write and ioctl;

•Device interfaces:

•/dev/mobicore

•/dev/mobicore-user

•/dev/mst_ctrl

MobiCore Driveri

mst_drvi

Android Kernel

•Drivers related to SamsungPay:

•MobiCore Driver ->

Interface for Userland;

•MobiCore Kernel Driver ->

Talk to TrustZone;

•mst_drv Driver ->

Control MST Device;

•Source Code Available;

Android Kernel

•Drivers related to SamsungPay:

•MobiCore Driver ->

Interface for Userland;

•MobiCore Kernel Driver ->

Talk to TrustZone;

•mst_drv Driver ->

Control MST Device;

•Source Code Available;

Function CmdID Comments

turnonMST 1
Used

turnoffMST 0

sendTrack1 2

UnusedsendTrack2 3

sendTrack3 6

sendTest 4 Used In Test APP

Escape 5

TrustZone
•OS is closed-source, MobiCore, developed by Giesecke & Devrient;

•Trustlets run in it, with MCLF format;

•Signed but NOT encrypted;

•Different payment use different trustlets:

;

•Trustlet entry accepts two arguments: tci and its length;

•tci points to WSM(World Shared Memory)

• After loaded, Trustlet does some initialization, then call

tlApiWaitNotification api wait notification from normal world;

•Accept commands from normal world:nativeProcessTACommand

SE

•Hardware:

•SmartMX2-P61 family;

•Model: P61N1M3(maybe);

•Integrated into NFC controller

chip;

•SmartMX2 CPU, 90nm CMOS;

•ISA: Super Set of 80C51;

•Fame2 crypto coprocessor for

RSA/ECC;

•SBC crypto coprocessor for

DES/AES;

•Hardware(cont.):

•128KB E2PROM,1.2MB Flash,

34KB RAM;

•Five modes:

•Boot Mode;

•Test Mode;

•Firmware Mode;

•System Mode;

•User Mode;

•SPI interface for connecting

directly to SE;

•EAL6+;

SE

SE
•Software:

•A Card OS inside, Regulated by

•Java Card runtime;

•Cryptographic and Hashing;

•Security Domain;

•Global Platform API;

•Card Life Cycle Models;

•Secure Channel;

SE
•Software:

•A Card OS inside, Regulated by

•Java Card runtime;

•Cryptographic and Hashing;

•Security Domain;

•Global Platform API;

•Card Life Cycle Models;

•Secure Channel;

•Isolated Environment for Running Applets

and Storing Data(keys ,config data), like

sandbox;

•Issuer Security Domain(ISD) own the top

privilege(Samsung);

•Supplementary Security Domains(SSD) for

Users, lower privilege;

•Cross Domains access is prohibited;

SE
•Software:

•A Card OS inside, Regulated by

•Java Card runtime;

•Cryptographic and Hashing;

•Security Domain;

•Global Platform API;

•Card Life Cycle Models;

•Secure Channel;

•Isolated Environment for Running Applets

and Storing Data(keys ,config data), like

sandbox;

•Issuer Security Domain(ISD) own the top

privilege(Samsung);

•Supplementary Security Domains(SSD) for

Users, lower privilege;

•Cross Domains access is prohibited;

•Built upon APDU;

•Negotiation and Authentication before

doing any operation;

•Session Keys are negotiated for every

connection;

•Traffic packets are encrypted by Session

Keys;

In a word

•Many components in multi levels;

•Roughly 3 layers:

•Android;

•MobiCore(TrustZone);

•Applets and OS in SE;

•We focus mostly on the latter two;

Steal Money from SamsungPay?!

Registration

Payment
Remote

Local

Payment-Basic
•Payment is the most frequently

used feature;

•Step for using SamsungPay:

•Select Card -> select one of virtual card

you registered in SamsungPay

•Authenticate -> password/fingerprint/iris

•Tap on POS -> stay phone close to

POS terminal;

•SamsungPay transmits NFC and

MST signal at the same time;

•We focus on both hardware and

software implementation of MST

transaction;

Payment-Token Capture

•MST signal can be captured by coil;

•The energy of this signal is high enough to be captured from a

distance;

•Reported by 3 groups on BlackHat and USENIX;

Payment-Token Capture

•Transmit Track2 Info Only;

•30 times in 30s for each payment;

Payment-Token Analysis

•Different version was found in China;

•6 digits token instead of 3(documented in BH USA 2015);

•No internet or cellular required while generating tokens;

•Synchronized by sequence number;

6230745372011888888=21021010051295089

6230745372011888888=21021010061045672

6230745372011888888=21021010071577380

6230745372011888888=21021010081608599

6230745372011888888=21021010091744699

PAN

Const

BankID

Token

Sequence

Payment-Token Analysis

•Different version was found in China;

•6 digits token instead of 3(documented in BH USA 2015);

•No internet or cellular required while generating tokens;

•Synchronized by sequence number;

6230745372011888888=21021010051295089

6230745372011888888=21021010061045672

6230745372011888888=21021010071577380

6230745372011888888=21021010081608599

6230745372011888888=21021010091744699

PAN

Const

BankID

Token

Sequence

PRG + Seed ?

Payment-Token Generation

•Generating token securely is vital to mobile payment;

•Samsung uses layering model to minimize attacking

surface;

•Most work are done in TrustZone and SE;

•Two procedures involved, and each accepts one

argument from userland:

•StartPay(AID)

•transmitMSTData(ConfigData)

Payment-Token Generation

StartPay

in

Trustlet

checkData

getAuth

convertData

openESEDevice

APDU_StartUseCard

checkPayMode

APDU_selectAID

APDU_getTrackData

Payment-Token Generation

StartPay

in

Trustlet

checkData

getAuth

convertData

openESEDevice

APDU_StartUseCard

checkPayMode

APDU_selectAID

APDU_getTrackData

Ensure

authentication

complete

Payment-Token Generation

StartPay

in

Trustlet

checkData

getAuth

convertData

openESEDevice

APDU_StartUseCard

checkPayMode

APDU_selectAID

APDU_getTrackData

String2hex

(AID)

Ensure

authentication

complete

Payment-Token Generation

StartPay

in

Trustlet

checkData

getAuth

convertData

openESEDevice

APDU_StartUseCard

checkPayMode

APDU_selectAID

APDU_getTrackData

String2hex

(AID)

Ensure

authentication

complete

Through

SPI

Payment-Token Generation

StartPay

in

Trustlet

checkData

getAuth

convertData

openESEDevice

APDU_StartUseCard

checkPayMode

APDU_selectAID

APDU_getTrackData

String2hex

(AID)

Ensure

authentication

complete

Is NFC or

MST mode?

Through

SPI

Payment-Token Generation

StartPay

in

Trustlet

checkData

getAuth

convertData

openESEDevice

APDU_StartUseCard

checkPayMode

APDU_selectAID

APDU_getTrackData

Talk to SE

String2hex

(AID)

Ensure

authentication

complete

Is NFC or

MST mode?

Through

SPI

Payment-Token Generation

CheckTrackData EncodeTrackData

Validate track
data format and

charset by
TrackNum

Select charset by
TrackNum, and
encode data to

signal(binary
stream)

AdjustData Send2Device

Generate
leading and tail

zeros, and
connect to signal

above

Copy result to a
shared memory.

transmitMSTData(ConfigData)

Payment-Summary

•Token can be easily captured;

•Token is valid for transaction at that time;

•Invalid or expired if used;

•Synchronized by seqnum can be a problem;

•Algorithm is inside SE.
Payment

Payment-Summary

•Token can be easily captured;

•Token is valid for transaction at that time;

•Invalid or expired if used;

•Synchronized by seqnum can be a problem;

•Algorithm is inside SE.
Payment

Can we get the algorithm and

generate valid token OFF the

phone?

Registration-Guide

Registration-Code

✓ Environment check while launch;

✓ Highly relied on KNOX;

✓ Check server certificate while using SSL;

✓ Encrypt Packets while transaction;

✓ Obfuscate dalvik code;

✓ Check Signature in native lib;

✓ Obfuscate native algorithm work flow;

Registration-Code

✓ Environment check while launch;

✓ Highly relied on KNOX;

✓ Check server certificate while using SSL;

✓ Encrypt Packets while transaction;

✓ Obfuscate dalvik code;

✓ Check Signature in native lib;

✓ Obfuscate native algorithm work flow;

x Log all actions into logcat;

Registration-Code

✓ Environment check while launch;

✓ Highly relied on KNOX;

✓ Check server certificate while using SSL;

✓ Encrypt Packets while transaction;

✓ Obfuscate dalvik code;

✓ Check Signature in native lib;

✓ Obfuscate native algorithm work flow;

x Log all actions into logcat;

x Even the decrypted https packets;

Registration-Code

✓ Environment check while launch;

✓ Highly relied on KNOX;

✓ Check server certificate while using SSL;

✓ Encrypt Packets while transaction;

✓ Obfuscate dalvik code;

✓ Check Signature in native lib;

✓ Obfuscate native algorithm work flow;

x Log all actions into logcat;

x Even the decrypted https packets;

x Other information (Next Page);

Registration-Code

getCard

IssuerInfo

Enroll

Card

Wait

Push

Request

OTP

Verify

OTP

Apply a virtual card for
physical card, with your
credentials

Collect Issuer info
according to your card
number

Wait for virtual card
download info

Send the OTP back to
bank to finish
identification

Ask bank to send OTP to
you, like cellphone, to
identify

Registration-Code

getCard

IssuerInfo

Enroll

Card

Wait

Push

Request

OTP

Verify

OTP

Apply a virtual card for
physical card, with your
credentials

Collect Issuer info
according to your card
number

Wait for virtual card
download info

Send the OTP back to
bank to finish
identification

Ask bank to send OTP to
you, like cellphone, to
identify

Registration-Code

getCard

IssuerInfo

Enroll

Card

Wait

Push

Request

OTP

Verify

OTP

Apply a virtual card for
physical card, with your
credentials

Collect Issuer info
according to your card
number

Wait for virtual card
download info

Send the OTP back to
bank to finish
identification

Ask bank to send OTP to
you, like cellphone, to
identify

Registration-Code

getCard

IssuerInfo

Enroll

Card

Wait

Push

Request

OTP

Verify

OTP

Apply a virtual card for
physical card, with your
credentials

Collect Issuer info
according to your card
number

Wait for virtual card
download info

Send the OTP back to
bank to finish
identification

Ask bank to send OTP to
you, like cellphone, to
identify

Registration-Code

Init Connection

Registration-Code

Data from Push Msg

Registration-Download

SE Initialization Virtual Card Applet Download

• Initial only ONCE, at the

first time of use;

• Done by SKMS(Samsung)

and TSM(Bank);

• New Supplementary

Security Domain(SSD)

Created;

• Download and Install

Applet of Virtual Card;

• Store corresponding data

to SE;

• Belong to New SSD;

• While Activated, the applet

can represent your

physical bank card;

Registration-Download

SE Initialization Virtual Card Applet Download

• Initial only ONCE, at the

first time of use;

• Done by SKMS(Samsung)

and TSM(Bank);

• New Supplementary

Security Domain(SSD)

Created;

• Download and Install

Applet of Virtual Card;

• Store corresponding data

to SE;

• Belong to New SSD;

• While Activated, the applet

can represent your

physical bank card;
•Whole process are protected by session

key and SSL

Registration-Tips

③ Android 5.1.1 is vulnerable to

some root tools;

Registration-Tips

③ Android 5.1.1 is vulnerable to

some root tools;

① Traffic packets for both

process are encrypted by

random session key, and

transferred through SSL;

Registration-Tips

③ Android 5.1.1 is vulnerable to

some root tools;

② To learn more, packets

should be decrypted;

① Traffic packets for both

process are encrypted by

random session key, and

transferred through SSL;

Registration-Tips

③ Android 5.1.1 is vulnerable to

some root tools;

② To learn more, packets

should be decrypted;
③MITM for SSL does not work;

① Traffic packets for both

process are encrypted by

random session key, and

transferred through SSL;

Registration-Tips

③ Android 5.1.1 is vulnerable to

some root tools;

④ Instead of cracking SSL, we

have to probe the internals;

② To learn more, packets

should be decrypted;
③MITM for SSL does not work;

① Traffic packets for both

process are encrypted by

random session key, and

transferred through SSL;

Registration-Tips

③ Android 5.1.1 is vulnerable to

some root tools;

④ Instead of cracking SSL, we

have to probe the internals;

② To learn more, packets

should be decrypted;
③MITM for SSL does not work;

① Traffic packets for both

process are encrypted by

random session key, and

transferred through SSL;

Thus a secure root is must

Registration-Tips

③ Android 5.1.1 is vulnerable to

some root tools;

④ Instead of cracking SSL, we

have to probe the internals;

② To learn more, packets

should be decrypted;
③MITM for SSL does not work;

① Traffic packets for both

process are encrypted by

random session key, and

transferred through SSL;

Thus a secure root is must

①SamsungPay is launched

with Android 6.0.1;

Registration-Tips

③ Android 5.1.1 is vulnerable to

some root tools;

④ Instead of cracking SSL, we

have to probe the internals;

② To learn more, packets

should be decrypted;
③MITM for SSL does not work;

① Traffic packets for both

process are encrypted by

random session key, and

transferred through SSL;

Thus a secure root is must

② However SamsungPay works

fine on 5.1.1;

①SamsungPay is launched

with Android 6.0.1;

Registration-Tips

③ Android 5.1.1 is vulnerable to

some root tools;

④ Instead of cracking SSL, we

have to probe the internals;

② To learn more, packets

should be decrypted;
③MITM for SSL does not work;

① Traffic packets for both

process are encrypted by

random session key, and

transferred through SSL;

Thus a secure root is must

② However SamsungPay works

fine on 5.1.1;

①SamsungPay is launched

with Android 6.0.1;

③ Android 5.1.1 is vulnerable to

some root tools;

Registration-Tips

③ Android 5.1.1 is vulnerable to

some root tools;

④ Instead of cracking SSL, we

have to probe the internals;

② To learn more, packets

should be decrypted;
③MITM for SSL does not work;

① Traffic packets for both

process are encrypted by

random session key, and

transferred through SSL;

Thus a secure root is must

④ Root privilege can be gained

temporarily;

② However SamsungPay works

fine on 5.1.1;

①SamsungPay is launched

with Android 6.0.1;

③ Android 5.1.1 is vulnerable to

some root tools;

Registration-Code

TSMService

SKMS

Agent

Registration-Trick1
TSMService

Registration-Trick1
TSMService

Registration-Trick1

Jni_iDM=Jni_isDebugMode

TSMService

Registration-Trick2
SKMS Agent

Registration-Trick2
SKMS Agent

unmodifiable

Registration-Trick2
SKMS Agent

Return 0 unmodifiable

Registration-Trick2

Return 0

Registration-Trick2

Return 0

•SKMS Agent is a

pre-installed app,

Only odex exsit;

Registration-Trick2

Return 0

•SKMS Agent is a

pre-installed app,

Only odex exsit;

•System will

execute the native

code in odex file

instead of dalvik

code;

Registration-Trick2

Return 0

•SKMS Agent is a

pre-installed app,

Only odex exsit;

•System will

execute the native

code in odex file

instead of dalvik

code;

•Let’s modify

native code

directly;

Registration-Trick2

Return 0

•SKMS Agent is a

pre-installed app,

Only odex exsit;

•System will

execute the native

code in odex file

instead of dalvik

code;

•Let’s modify

native code

directly;

Registration-Trick2

Registration-Trick2

• Dm-verity is enabled, we can’t change files on System partition;

Registration-Trick2

• Dm-verity is enabled, we can’t change files on System partition;

• Files in dalvik-cache are also odex file;

Registration-Trick2

• Dm-verity is enabled, we can’t change files on System partition;

• Files in dalvik-cache are also odex file;

• System will load dalvik-cache if odex not exist in app dir;

Registration-Trick2

• Dm-verity is enabled, we can’t change files on System partition;

• Files in dalvik-cache are also odex file;

• System will load dalvik-cache if odex not exist in app dir;

• Remove odex will NOT trigger dm-verity;

Registration-Trick2

• Dm-verity is enabled, we can’t change files on System partition;

• Files in dalvik-cache are also odex file;

• System will load dalvik-cache if odex not exist in app dir;

• Remove odex will NOT trigger dm-verity;

• NO integrity check for native code;

Registration-strategy

•Enable packets log strategy:

•Modify odex native code;

•Rename to system@priv-

app@SKMSAgent@SKMSAgent.apk@classes.dex

•Write to dalvik-cache directory;

•Remove original odex file under root privilege;

•Patch Applied!

Registration-SE Operations
7 Steps of Registration

–Create Supplementary Security Domain;

–Update Supplementary Security Domain keys;

–Install ARC-C Application;

–Personalize AMSD and Write SEID;

–Add Access Rules for CRS;

–Install CARDS Applet;

–Install Applet;

SE

Initialization

TSMService

SKMS Agent

Applet

Download

•All packets are transmitted through Secure Channel;

•3 keys involved: Keyisd, Keydefault and Keybank;

Registration-SE Operations
•Create Supplementary Security Domain:

•Done by SKMS Agent and Samsung Server;

•Use Keyisd to set up Secure Channel, encrypted by Triple DES;

•Only Samsung and SE know Keyisd;

•Working in privilege Security Domain—Issuer Security Domain;

•At the end of this stage, Keydefault is set for new domain;

Registration-SE Operations

Registration-SE Operations
•Update Supplementary Security Domain keys:

•Update Keydefault with Keybank;

•Working in supplementary Security Domain;

•Install ARC-C Application:
•ARA-C(Access Rule Application Client);

•Hardware-based Access Control Mechanism, allow specific android app to

access SE;

•Hash of certificate is written into;

•Personalize AMSD and Write SEID:

•AMSD(Authorized Mode Secured Domain, AMSD);

•Bank assigns an SEID for SE, and write it into SE;

Registration-SE Operations
•Add Access Rules for CRS:

•CRS(Contactless Registry Service)

•Application selection rules on the contactless interface(for NFC);

•Install CARDS Applet:

•Seems Core of Bank implementation,around 11K;

•After Installation, few initializaiton opertions are done by ISO7816

standard cmds instead of secure channel:

•CREATE FILE

•UPDATE BINARY

•GET CHALLENGE

•SET PIN

Registration-SE Operations

•Install Applet:

•Applet for generating tokens, around 53K;

•Different cards may share the same blob, but different

data;

•The entity that trustlets comminucate with in TrustZone;

•The whole blob is encrypted, no more detail known

until one of the keys gained: Keyisd, Keydefault and

Keybank

Registration-Summary

•All traffic packets are encrypted;

•Information leaks also exist;

•Tokens are generated inside SE by certain applet;

•Applets and their config data are stored through

Secure Channel, no plain text data exposed;

•Secure Channel is secured by cryptographic key;

Registration

Registration-Summary

•All traffic packets are encrypted;

•Information leaks also exist;

•Tokens are generated inside SE by certain applet;

•Applets and their config data are stored through

Secure Channel, no plain text data exposed;

•Secure Channel is secured by cryptographic key;

Your WALLET is secured properly!

Registration

Black Hat Sound Bytes

•We detailed all process of SamsungPay from userland to

TrustZone;

•Keyisd is critical for the whole payment system, once leak,

attacker can do whatever they want;

•Other two keys are also important to understand the

mechanism inside SE;

•SamsungPay will stay secure until these keys leaked/gained;

•Mistake and design faults are made by Samsung and 3rd

party developer;

Acknowledgement

• My leader: tombkeeper

• reeseliu for drawing sketch and document
translation

• rudywang, jacksonma,huimingliu

• All team members in Xuanwu Lab

Q&A

