
Abusing Silent Mitigations
Understanding weaknesses within Internet Explorer’s Isolated Heap and MemoryProtection

Abdul-Aziz Hariri
Brian Gorenc
Simon Zuckerbraun

1

2 Isolated Heap

3 MemoryProtection

Overview1

Agenda

2

4 Bypassing ALSR using MemoryProtection

5 Recommended defenses

6 Conclusion

Overview

3

Introductions

4

HP Zero Day Initiative

•  World’s Largest Vendor Agnostic Bug Bounty Program

•  Focused on Vulnerability Discovery and Remediation

•  Research Advanced Exploitation Techniques

Microsoft Mitigation Bypass and Blue Hat Bonus for
Defense Program Research Group

•  Abdul-Aziz Hariri

•  Simon Zuckerbraun

•  Brian Gorenc

Use-After-Free Vulnerabilities

5

2014

May
CVE-2014-1776
CVE-2014-1815

Mar
CVE-2014-0307

2013

May
CVE-2013-1311
CVE-2013-1347

Aug
CVE-2013-3184

Mar
CVE-2013-2551

Oct
CVE-2013-3893
CVE-2013-3897

Feb
CVE-2013-0025

Sep
CVE-2013-3205

Feb
CVE-2014-0322

What is next?
It is finally getting harder!

ZDI Internet Explorer Submission Trends

7

Impact of Microsoft’s Mitigations

0
5

10
15
20
25
30
35
40
45
50

2014

Nov
Winner Notification!

2015

Jul
MS14-037
MemoryProtection
Released
MemoryProtection
PoC Created

Apr
“No fix coming”

Research Timeline

8

From Mitigation Release to Public Release

Jun
MS14-035
Isolated Heap
Released
Isolated Heap
PoC Created

Oct
White Paper
Submitted
Follow-up
meeting

Jun
Public Release at REcon

Sept
ASLR Bypass
PoC Created

Jan
Charities Paid

Feb
Public
Announcement

Isolated Heap

9

“Not a security boundary”
Isolated Heap

•  New heap region created using HeapCreate API

•  Most objects moved to Isolated Heap

•  Makes use-after-free vulnerability exploitation harder

•  Classical overwrites of objects does not work anymore

10

Isolated Heap

11

Weaknesses and attack scenarios

•  Isolated Heap does not keep track / record the object types
–  Type confusion possible

•  Attacker can overwrite an isolated freed object with smaller/bigger objects
–  Make use of the type confusion/size weaknesses

•  Highly dependent on the offset being dereferenced from the freed object

Aligned Allocations Attack Technique

12

•  Replace freed object with another object which is also allocated inside the isolated region

•  Object chosen as a replacement should contain controllable value at a known offset
–  Value that we can indirectly control (spray etc..)

•  Perfect for use-after-free that dereferences high offsets

•  Avoid LFH

•  Simplest way to achieve this:

Trigger freeing
condition

Massage heap
forcing multiple
frees

Coalesce heap to
create larger freed
chunk

Replace object with
different object
using heap spray

Trigger re-use using
type-confused
object

Aligned Allocation Attack Technique

13

HEAP HEAP

CTableRow CDOMTextNode

Offset with
controllable value

Align Allocations Example
•  Use-after-free dereference offset 0x30

•  Fill freed object with CDOMTextNode object

•  Controllable value (0x40000000) at offset 0x30

14

Align Allocations Example

15

Controlling dereferences

•  Successful overwrite and dereference:

•  Next an attacker can spray that address with controlled values

Misaligned Allocations Attack Technique

16

Hitting low offsets

•  Aligned allocations attack techniques works well with high offsets.

•  Low offsets might be a problem
-  Finding an object with values that we control

•  Use-after-free dereferencing a low offset (0x0->0x20) can be problematic

•  To solve this problem, if the target object starts at X we’ll have to allocate at X-n

•  Simple steps:

Influence the heap to coalesce more
free chunks in one big chunk

Spray random objects inside the big
free chunk

Dereference a pointer from an
element that resides within a
misaligned object

Misaligned Allocation Attack Technique

17

CTableRow CButton

HEAP HEAP

Offset with
controllable value

Misaligned Allocations Attack Example

18

•  Stabilize the heap in a way that would
always provide a freed chunk of the same
size.

•  EDI will be pointing to an offset within a
misaligned object.

•  Code was used in ZDI-CAN-2495 to produce
a freed chunk of size 0x110:

var objs = new Array();

for (var i; i < 0x1000; i++)

objs[i] = document.createElement(‘p’);

for (var i; i < 0x1000; i++)

objs[i] = null;

objs[i] = null;
CollectGarbage();

var objs = new Array();

for (var i; i < 0x1000; i++)

objs[i] = document.createElement(‘video’);

Misaligned Allocations Attack Example

19

•  EDI points somewhere inside the freed chunk

Misaligned Allocations Attack Example

20

•  Assuming stabilized heap, spray some objects

•  We used button/track objects.
–  CButton object contains a value that we can spray

var objs = new Array();

for (var i; i < 0x1000; i+=2)
{
 objs[i] = document.createElement(‘button’);  
 objs[i+1] = document.createElement(‘track’);  
}

Misaligned Allocations Attack Example

21

Controlled offset

•  EDI+0x1C now lands at 0x12C00400 in the
CButton object

•  0x12C00400 value is easily sprayed

Isolated Heap

22

Recap

•  Does a good job separating DOM objects from other types of allocations.

•  Not perfect, contains weaknesses (type confusion, misalignment issues etc.)

•  Attacking Isolated heap is dependent on several factors (bug nature, offsets, LFH etc.)

MemoryProtection

23

What is MemoryProtection?

24

•  Prevent memory blocks from being
deallocated while being referenced

•  MS14-037
–  Checks for references on the stack

•  MS14-051
–  Added checks for references in processor registers

•  ProtectedFree called in place of
HeapFree
–  Adds block to per-thread list of blocks waiting to

be freed

WAIT LIST

Isolated Heap?
Block Size

Block Base Addr
Entry

HEAP

Attacker Script

Delayed Freeing Mechanism

25

ProtectedFree(x)

Check if the
memory allocated
for the wait list is

completely full
Full? Reclamation

Sweep

Y
Examine total size
of blocks place on
wait list since last

reclamation
sweep

N
>=100,000??

N

Y Add block X to
wait list

Fill block X with
zeros END

Reclamation Process

26

HEAP
STACK

int32

?
Block is waitlisted

HEAP

After reclamation,
block is still
waitlisted

HEAP

After reclamation,
block is free

WAIT LIST

Isolated Heap?
Block Size

Block Base Addr
Entry

Processor

ECX
…

EAX
…

?

MemoryProtection Challenges

27

1.  Deallocation delay
–  Memory blocks deallocation delayed until reclamation sweep is performed

2.  Non-determinism due to “stack junk”
–  Memory block unexpectedly survive a sweep due to a value that equates to a pointer to the block
–  Could be non-pointer or a stale pointer left over in stack buffer not cleared of former contents
–  Low-probability

3.  Greater complexity in determining the deallocation time
–  Reclamation sweep performed by 100,000 bytes waiting to be freed
–  Might require a large number of blocks on the wait list

4.  More complex heap manager behavior at deallocation time
–  Many memory blocks are freed during reclamation sweep
–  Due to reordering of the wait list, impossible to predict order of HeapFree calls

Elementary Attack Techniques

28

Forcing Reclamation Sweep

•  Generic Memory Pressuring Loop
1.  Allocate 100,000 bytes worth of objects
2.  Allocate one additional to hit limit

3.  Free objects
4.  Reclamation sweep performed

•  Limitations
–  Solves “Deallocation delay” challenge
–  Non-deterministic deallocation pattern

// Code to free some object goes here
...
// End of code to free the object

// Pressuring loop to force reclamation
var n = 100000 / 0x34 + 1;
for (var i = 0; i < n; i++)
{

document.createElement("div");
}
CollectGarbage();

// Code to reuse the object follows
...

Elementary Attack Techniques

29

Forcing Reclamation Sweep

•  Trigger WndProc
–  Interrupt exploit code with a delay to ensure WndProc call
–  Unconditional reclamation sweep performed

•  Limitations
–  Not compatible with all vulnerability types
–  Stopping and resuming execution could interfere with

vulnerability
–  setTimeout creates opportunity for additional code

paths to execute

•  Issue
–  Post-September patch rendered the unconditional

reclamation due to WndProc non-functional

function step1() {
// Setup code goes here
...
// End of setup code

// Delay the next step so WndProc will re-enter,
// clearing the wait list

window.setTimeout(step2, 3000);

}

function step2() {

// Code to free some object goes here
...
// End of code to free the object

// Delay the next step so WndProc will re-enter,
// clearing the wait list and deallocating our
// object

window.setTimeout(step3, 3000);

}

function step3() {
// Code to reuse the object follows
...
}

Advanced Attack Techniques

30

Key facts to exploitation

WAIT LIST

Isolated Heap?
Block Size

Block Base Addr
Entry

Isolated
Heap

Process
Heap

Reclamation
Sweep

Examine total size
of blocks place on
wait list since last

reclamation
sweep

>=100,000??

N

Add block X to
wait list

Advanced Attack Techniques

31

Prepping the wait list

Attacker Script Browser Code CMemoryProtector Heap Manager

method to trigger
buffer allocation

method to trigger
buffer free

HeapAlloc(size 100,000)

Block at address A

Allocate block at
address A

ProtectedFree(A)

Add block at
address A to the

wait list

Resulting wait list state:

Entry for block X1

Entry for block X2

…

Total size: >= 100,000

Entry for block A
(size 100,000)

Advanced Attack Techniques

32

Bringing the wait list to a known state and approximate size

Attacker Script Browser Code CMemoryProtector Heap Manager

method to trigger
buffer allocation

method to trigger
buffer free

ProtectedFree(B)

HeapAlloc(size s)

Block at address B

Allocate block at
address B

Add block at
address B to the

wait list

Reclamation
Sweep HeapFree(Xi)

HeapFree(A)

Loop over Xi blocks
These are not
guaranteed to occur
in any particular
order

Resulting wait list state:

Entry for block W1

Entry for block W2

…

Entry for block B (size s)

Advanced Attack Techniques

33

Reliably deallocate a memory block

Attacker Script Browser Code CMemoryProtector Heap Manager
method to trigger

free of block C

ProtectedFree(C)
Add block at

address C to the
wait list

method to trigger
buffer allocation

(size 100,000) HeapAlloc(size 100,000)

Block at address D

Allocate block at
address D

method to trigger
buffer free

Add block at
address D to the

wait list
ProtectedFree(D)

method to trigger
buffer allocation

(size s) HeapAlloc(size s)

Block at address E

Allocate block at
address E

method to trigger
buffer free

Reclamation
Sweep

HeapFree(C)

HeapFree(D)

ProtectedFree(E)

Resulting wait list state:

Entry for block W1

Entry for block W2

…

Entry for block E (size s)

Attribute Size Allocation and Freeing

34

Method of triggering

•  SysAllocString / SysFreeString-based string buffers don’t use ProtectedFree

•  CStr defined in MSHTML comes to our aid

•  CElement::Var_getElementsByClassName
–  Reached by invoking the DOM method getElementsByClassName
–  Creates a CStr containing the string data that was passed in and later deletes using ProtectedFree

•  getElementsByClassName
–  Accomplish goal of allocating and freeing a buffer of arbitrary size
–  Priming procedure required

•  Limitation
–  getElementsByClassName will not use a CStr unless the parameter a string length of at least 0x28 characters
–  CStr allocates size to hold characters (two bytes per char) pluc 6 additional bytes
–  Smallest heap buffer is 0x28*2+6 bytes or 0x56 bytes

–  No upper limit

Buffer allocation/ProtectedFree code

35

Remove complexity of deallocation behaviour due to MemoryProtection

var oDiv1 = document.createElement('div');

// Advance call for string1
window.ref1 = oDiv1.getElementsByClassName(string1);

// Advance call for string2
window.ref2 = oDiv1.getElementsByClassName(string2);

// ...

// Allocate/ProtectedFree a buffer with size of string1
oDiv1.getElementsByClassName(string1);

// ...

// Allocate/ProtectedFree a buffer with size of string1
oDiv1.getElementsByClassName(string1);

// ...

// Allocate/ProtectedFree a buffer with size of string2
oDiv1.getElementsByClassName(string2);

Demo

36

Bypassing ASLR with
MemoryProtection

37

ASLR Bypass

38

Question posed by Fortinet

http://blog.fortinet.com/post/is-use-after-free-exploitation-dead-the-new-ie-memory-protector-will-tell-you

HEAP

STACK

int32

?

Block is waitlisted

HEAP

After reclamation,
block is still
waitlisted

HEAP
After reclamation,
block is free

MemoryProtection as an Oracle

MemoryProtection’s Public Interface

40

int DllNotification(DWORD fdwReason, LPVOID lpvReserved)	
void CMemoryProtector::ProtectCurrentThread()	
void CMemoryProtector::ProtectedFree(HANDLE hHeap, void* pMem)	
 	

No information is ever returned to the caller.

STACK

int32

Attacker
script

Memory
Protection

We need a side channel.

No Feedback Loop

Operating the browser in a regime of high memory pressure.

42

JavaScript Out-of-Memory Exceptions

43

Script can detect whether an allocation succeeds or fails.

Whether an allocation succeeds or fails is a function of the
existing state of the heap.

44

45

JavaScript out-of-memory exceptions are a side channel
that reveals information about the state of the heap.

STACK

int32

Attacker
script

HEAP

JavaScript out-of-memory
exception conveys information
about heap state

MemoryProtection
 modifies heap state

Memory
Protection

Feedback Loop

Chain of Deductions

47

Presence/absence of
out-of-memory exception

Current state of heap

How MemoryProtection
has behaved

Whether guessed address X
falls within the targeted block

Operating the browser in a regime of high memory pressure.

48

Operating the browser in a regime of limited availability of large
contiguous regions of free address space.

49

Playing with Memory Pressure

50

1MB1MB

New 1MB allocation

51

1MB

Consulting the Oracle

52

1MB

New 1MB allocation

Consulting the Oracle

53

1MB

Waitlisted 1MB allocation

Consulting the Oracle

54

1MB

Waitlisted 1MB allocation

Consulting the Oracle
STACK

int32 = X

?

55

Consulting the Oracle: After Reclamation

1MB

1MB
allocation
remains
waitlisted

STACK

int32 = X
1MB

1MB
allocation
Is freed

STACK

int32 = X

New attempt to allocate 1MB results
in an out-of-memory exception

New attempt to allocate 1MB
succeeds

Operating the browser in a regime of limited availability of large
contiguous regions of free address space.

56

Load a module.

57

58

Loading a Module Into the Hole

wmp.dll

ASLR

Demo

59

Recap
•  We can abuse MemoryProtection to defeat ASLR

•  JavaScript out-of-memory exceptions are a side channel that reveals critical information about the state of the
heap

•  Operating the browser under memory pressure

60

Recommended Defenses

61

Improvements to MemoryProtection
•  Remove MemoryProtection from array and buffer allocations.

–  UAFs of arrays and buffers in IE are rare to non-existent
–  Applying MemoryProtection gives a known significant benefit to the attacker

62

Improvements to ASLR

63

Improvements to ASLR

64

•  ASLR chooses a random address to load a requested module

•  Broken Assumption
–  Random choice exhibits significant entropy, since there will be many address at which the module could load

•  Strengthen ASLR by performing an entropy check at module load time
–  Check for minimum entropy level (number of possible load addresses) before loading the module
–  If minimum entropy can not be provided, STOP and do not load the module

•  Implement this new check as part of kernel
–  On an opt-in basis for executables such as browsers

•  Implement in user-land code
–  Hook relevant system calls

[Patent Pending]

Improvements to ASLR

6565

Application Operating System

Load Library

Success

Determine amount of entropy
in the set of virtual addresses
at which the requested library

could be loaded

Minimum entropy met.
Proceed to load requested library

into address space at virtual
address chosen randomly from

among all possible load
addresses.

Locking employed to
ensure that no changes
to address availability
occur between time of
check and time of use

Load Library

Failure

Determine amount of entropy
in the set of virtual addresses
at which the requested library

could be loaded

Minimum entropy not met.
Do not load library. Return failure
indication to calling application.

Locking employed to
ensure that no changes
to address availability
occur between time of
check and time of use

[Patent Pending]

Eliminate JavaScript Out-of-Memory Exceptions

66

STACK

int32

Attacker
script

HEAP

JavaScript out-of-memory
exception conveys information
about heap state

MemoryProtection
modifies heap state

Memory
Protection

Additional heap partitioning
•  Separate heap for each scalar type

–  UAF can never lead to type confusion
–  Difficult or impossible to produce misalignments

–  May be too wasteful of address space for a 32-bit browser process

67

Digression: Address reuse attack
•  Attacker doesn’t care about heaps. Attacker cares only about addresses.

•  Can an address that is part of the IsoHeap at one point in time be part of the process heap at later point in time?

•  No, not the way IsoHeap is used today.

•  Small (<0.5MB) allocations are stored in heap segments, and those virtual addresses are never relinquished by the
heap they’re part of.

•  The same is not true for large allocations (>=0.5MB).

•  It’s pointless to try to protect buffers and arrays through heap isolation using the Windows heap manager.

68

32-bit Processes: Security vs Address Space Usage
•  We can only create a limited number of heaps.

•  Defender must make a trade-off. How can we maximize the defender’s advantage?

•  Heap containing the UAF hazard will contain objects of other types as well, and an attacker can always search for
ways to use those types for type confusion and misalignment.

69

Unless we randomize the heap ↔ type assignments
at runtime.

•  This denies to the attacker the ability to write a reliable exploit that relies on knowledge of which types are co-
located on a heap.

[Patent Pending]

Randomized Heap Partitioning

70

HEAP

HEAP

HEAP

HEAP

HEAP

ARRAY
Heap handle for type A
Heap handle for type B
Heap handle for type C
Heap handle for type D
Heap handle for type E
Heap handle for type F
Heap handle for type G
Heap handle for type H
Heap handle for type I
Heap handle for type J
Heap handle for type K
Heap handle for type L
Heap handle for type M
Heap handle for type N
Heap handle for type O
Heap handle for type P

Array has one element
for each scalar type
defined by the
application. Each
element holds a handle
to the heap that will be
used for allocating
objects of that type.

Array elements are
populated randomly.

[Patent Pending]

Effects of Randomized Heap Partitioning
•  Exploits become a lot messier, because the types needed for type confusion and/or misalignment are never

guaranteed to be on the heap that the attacker needs them to be on

•  Failed exploit attempts typically crash the process
–  Noise from crashed processes makes it easier to detect attacks
–  0-days in the wild can be discovered and patched more quickly
–  When the process is restarted, a new randomization takes place; attacker gains no knowledge from the crash

•  Attacker’s cost/benefit is degraded

71 [Patent Pending]

Recommended Defenses: Recap
•  Remove MemoryProtection from arrays and buffers

•  Strengthen ASLR by making a positive check for entropy in load address selection

•  Consider eliminating JavaScript out-of-memory exceptions

•  One heap per type in 64-bit processes

•  Randomized Heap Partitioning in 32-bit processes

72

Conclusion

73

Exploit Demo

74

Proof of Concept Release

75

Test it out yourself

github.com/thezdi

Questions

76

